

Presequence protease 1, chloroplastic/mitochondrial (PREP1), Recombinant Protein

Cat RP05095

Species

Arabidopsis thaliana (Mouse-ear cress)

Full Product Name

Recombinant Arabidopsis thaliana Presequence protease 1, chloroplastic/mitochondrial (PREP1) , partial

Product Gene Name

PREP1 recombinant protein

Product Synonym Gene Name

PREP1

Purity

Greater or equal to 85% purity as determined by SDS-PAGE. (lot specific)

Format

Lyophilized or liquid (Format to be determined during the manufacturing process)

Host

E Coli or Yeast or Baculovirus or Mammalian Cell

Molecular Weight

121,015 Da

Storage

Store at -20°C. For long-term storage, store at -20°C or -80°C. Store working aliquots at 4°C for up to one week. Repeated freezing and thawing is not recommended.

Protein Family

Presequence protease

NCBI Accession

NP_188548.2

NCBI GI

22331173

NCBI GenBank Nucleotide

NM_112804.5

NCBI GenID

821451

NCBI Official Full Name

presequence protease 1

NCBI Official Symbol

PREP1

FOR RESEARCH OR FURTHER MANUFACTURING USE ONLY

Presequence protease 1, chloroplastic/mitochondrial (PREP1), Recombinant Protein

Cat RP05095

NCBI Official Synonym Symbols

ATPREP1; ATZNMP; presequence protease 1

NCBI Protein Information

presequence protease 1

NCBI Summary

Zinc metalloprotease pitrilysin subfamily A. Signal peptide degrading enzyme targeted to mitochondria and chloroplasts. Expressed only in siliques and flowers

UniProt Gene Name

PREP1

UniProt Synonym Gene Names

ZNMP1; AtPreP1; PreP 1; AtZnMP1

UniProt Protein Name

Presequence protease 1, chloroplastic/mitochondrial

UniProt Synonym Protein Names

Zinc metalloprotease 1; AtZnMP1

UniProt Primary Accession

Q9LJL3

UniProt Secondary Accession

Q8RUN6

UniProt Related Accession

Q9LJL3

UniProt Comments

ATP-independent protease that degrades both mitochondrial and chloroplastic transit peptides after their cleavage. Also degrades other unstructured peptides. Specific for peptides in the range of 10 to 65 residues. Shows a preference for cleavage after small polar residues and before basic residues, with a bias for positively charged amino acid residues.

FOR RESEARCH OR FURTHER MANUFACTURING USE ONLY