Heat shock protein 81-2 (HSP81-2), Recombinant Protein

CD BioSciences
Plant Protein

Cat RP13705

Species

Oryza sativa subsp. japonica (Rice)

Full Product Name

Recombinant Oryza sativa subsp. japonica Heat shock protein 81-2 (HSP81-2), partial

Product Gene Name

HSP81-2 recombinant protein

Product Synonym Gene Name

HSP81-2

Purity

Greater or equal to 85% purity as determined by SDS-PAGE. (lot specific)

Format

Lyophilized or liquid (Format to be determined during the manufacturing process)

Host

E Coli or Yeast or Baculovirus or Mammalian Cell

Molecular Weight

80,200 Da

Storage

Store at -20°C. For long-term storage, store at -20°C or -80°C. Store working aliquots at 4°C for up to one week. Repeated freezing and thawing is not recommended.

Protein Family

Heat shock protein

NCBI Accession #

XP_015611110.1

NCBI GI#

1002295350

NCBI GenBank Nucleotide

XM 015755624.1

NCBI GenelD

4347402

NCBI Official Full Name

heat shock protein 81-2

NCBI Official Symbol

LOC4347402

NCBI Official Synonym Symbols

FOR RESEARCH OR FURTHER MANUFACTURING USE ONLY

Address: SUITE 209, 17 Ramsey Road, Shirley, NY 11967 Tel: 1-631-637-0420

Heat shock protein 81-2 (HSP81-2), Recombinant Protein

Cat RP13705

Hsp90; HSP81-2

NCBI Protein Information

heat shock protein 81-2

UniProt Gene Name

HSP81-2

UniProt Synonym Gene Names

HSP90; HSP81-2

UniProt Protein Name

Heat shock protein 81-2

UniProt Synonym Protein Names

Heat shock protein 90

UniProt Primary Accession #

069006

UniProt Secondary Accession #

Q0J0V1: Q76B83

UniProt Related Accession #

Q69QQ6

UniProt Comments

Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function.

FOR RESEARCH OR FURTHER MANUFACTURING USE ONLY

Address: SUITE 209, 17 Ramsey Road, Shirley, NY 11967 E-mail: info@cd-biosci.com
Tel: 1-631-637-0420 https://www.cd-biosciences.com/plant-protein/