9-cis-epoxycarotenoid dioxygenase 1, chloroplastic (VP14), Recombinant Protein

Cat RP10374

Species

Zea mays (Maize)

Full Product Name

Recombinant Zea mays 9-cis-epoxycarotenoid dioxygenase 1, chloroplastic (VP14), partial

Product Gene Name

VP14 recombinant protein

Purity

Greater or equal to 85% purity as determined by SDS-PAGE. (lot specific)

Format

Lyophilized or liquid (Format to be determined during the manufacturing process)

Host

E Coli or Yeast or Baculovirus or Mammalian Cell

Molecular Weight

65,495 Da

Storage

Store at -20°C. For long-term storage, store at -20°C or -80°C. Store working aliquots at 4°C for up to one week. Repeated freezing and thawing is not recommended.

Protein Family

9-cis-epoxycarotenoid dioxygenase

NCBI Accession #

NP_001105902.2

NCBI GI#

226529341

NCBI GenBank Nucleotide

NM_001112432.2

NCBI GenelD

732819

NCBI Official Full Name

9-cis-epoxycarotenoid dioxygenase 1, chloroplastic

NCBI Official Symbol

vp14

NCBI Official Synonym Symbols

GRMZM2G014392

FOR RESEARCH OR FURTHER MANUFACTURING USE ONLY

Address: SUITE 209, 17 Ramsey Road, Shirley, NY 11967

Tel: 1-631-637-0420

E-mail: info@cd-biosci.com
https://www.cd-biosciences.com/plant-protein/

9-cis-epoxycarotenoid dioxygenase 1, chloroplastic (VP14), Recombinant Protein

Cat RP10374

NCBI Protein Information

9-cis-epoxycarotenoid dioxygenase 1, chloroplastic

UniProt Gene Name

VP14

UniProt Synonym Gene Names

VP-14; VP14

UniProt Protein Name

9-cis-epoxycarotenoid dioxygenase 1, chloroplastic

UniProt Synonym Protein Names

Protein VIVIPAROUS14

UniProt Primary Accession #

024592

UniProt Related Accession #

024592

UniProt Comments

Has a 11,12(11',12') 9-cis epoxycarotenoid cleavage activity. Catalyzes the first step of abscisic-acid biosynthesis from carotenoids. Not active on the all-trans isomers of violaxanthin and neoxanthin. Contributes probably to abscisic acid synthesis for the induction of seed dormancy.

FOR RESEARCH OR FURTHER MANUFACTURING USE ONLY

Address: SUITE 209, 17 Ramsey Road, Shirley, NY 11967 Tel: 1-631-637-0420